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BACKGROUND: Whole blood (WB) has been used in
combat since World War I as it is readily available and
replaces every element of shed blood. Component
therapy has become standard; however, recent military
successes with WB resuscitation have revived the
debate regarding wider WB use. Characterization of
optimal WB storage is needed. We hypothesized that
refrigeration preserves WB function and that a patho-
gen reduction technology (PRT) based on riboflavin and
ultraviolet light has no deleterious effect over 21 days of
storage.
STUDY DESIGN AND METHODS: WB units were
stored for 21 days either at 4°C or 22°C. Half of each
temperature group underwent PRT, yielding four final
treatment groups (n = 8 each): CON 4 (WB at 4°C);
CON 22 (WB at 22°C); PRT 4 (PRT WB at 4°C); and
PRT 22 (PRT WB at 22°C). Testing was at baseline,
Days 1-7, 10, 14, and 21. Assays included coagulation
factors; platelet activation, aggregation, and adhesion;
and thromboelastography (TEG).
RESULTS: Prothrombin time (PT) and partial thrombo-
plastin time increased over time; refrigeration attenu-
ated the effects on PT (p � 0.009). Aggregation
decreased over time (p � 0.001); losses were attenu-
ated by refrigeration (p � 0.001). Refrigeration pre-
served TEG parameters (p � 0.001) and PRT 4
samples remained within normal limits throughout the
study. Refrigeration in combination with PRT inhibited
fibrinolysis (p � 0.001) and microparticle formation
(p � 0.031). Cold storage increased shear-induced
platelet aggregation and ristocetin-induced platelet
agglutination (p � 0.032), as well as GPIb-expressing
platelets (p � 0.009).
CONCLUSION: The in vitro hemostatic function of WB
is largely unaffected by PRT treatment and better pre-
served by cold storage over 21 days. Refrigerated PRT
WB may be suitable for trauma resuscitation. Clinical
studies are warranted.

INTRODUCTION

Transfusion medicine was born on the battlefields of
World War I with the lifesaving infusion of citrated whole
blood (WB) into severely injured combat casualties. WB
remained the product of choice for preventing and treat-
ing hemorrhagic shock through World War II, the Korean
War, and the Vietnam War. WB was used because it was
readily available from in-theater donors—the so-called
“walking blood bank”—and because it replaced all com-
ponents of shed blood required for oxygen transport and
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hemostasis.1 Low hemagglutinin-titer Type O WB, stored
in citrate-phosphate-dextrose anticoagulant (CPD) and
refrigerated, was used as a universal resuscitation fluid by
US Forces throughout the Vietnam conflict. This universal
WB product, as well as type-specific WB, was collected
from donor centers in the United States and Japan,
shipped to Vietnam, and used over the course of a 21-day
storage period.2 Current US military guidance for using
WB in the treatment of life-threatening bleeding requires
ABO blood type specificity to the recipient because of con-
cerns of hemolytic reaction. Other investigators address
this controversial policy in detail within this
supplement.3-5

The wars in Iraq and Afghanistan, the largest military
engagements since the Vietnam War, have been fought in
the age of component therapy and an era of heightened
awareness of the risks of transfusion-transmitted disease
(TTD). The overwhelming majority of transfusions to
combat casualties in the recent conflicts have been com-
ponent based,6 although the apparent success of fixed-
ratio transfusion to approximate WB (1:1:1 platelet [PLT] :
fresh frozen plasma [FFP] : red blood cell [RBC]) and the

use of fresh WB suggest that a larger role for WB could
reasonably be incorporated into future trauma resuscita-
tion strategies.7-12 A number of challenges remain to the
wider use of WB. These include imple-
menting pathogen risk mitigation,
determining the role and timing of PLT-
sparing leukoreduction, and optimal
storage conditions.13

In the US Military, WB is used for
emergency transfusions within 24 hours
of collection, before results of complete,
post hoc pathogen testing are available.
A pathogen reduction technology (PRT),
which uses riboflavin and ultraviolet
(UV) light to damage the nucleic acids
of white blood cells (WBCs), parasites,
bacteria, and viruses, is being consid-
ered for TTD risk mitigation. The effects
of this technology and subsequent
storage conditions on the hemostatic
properties of WB are poorly understood
but must be characterized if PRT-treated
WB is to be used to treat hemorrhage in
severely wounded service members.

Hemostasis is a complex process
involving the interaction of PLTs with
RBCs and plasma proteins and is locally
regulated by both biochemical factors
such as PLT secretory mediators and
biophysical properties such as local
blood flow. We hypothesized that patho-
gen inactivation with riboflavin and UV
light has no deleterious effect on the
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Fig. 1. Study design. WB units (n = 32) were divided into

control (CON: no pathogen reduction performed) and treat-

ment (PRT: pathogen reduction performed) and then stored

for 21 days under two temperature conditions, resulting in

four treatment groups: CON 4, untreated WB stored at 4°C

(n = 8); CON 22, untreated WB stored at 22°C (n = 8); PRT 4,

pathogen-reduced WB stored at 4°C (n = 8); and PRT 22,

pathogen-reduced WB stored at 22°C (n = 8). WB was tested at

baseline, after PRT, and on Days 1-7, 14, and 21.
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Fig. 2. Sample quality over time. Multiple measures assessed sample quality: (A)

lactate, (B) glucose, (C) hemolysis, and (D) pH changed significantly over time;

however, alterations were attenuated by refrigeration (A-D: p � 0.001). Glucose dif-

ferences due to PRT were small but significant (B: p � 0.008). The other parameters

were not significantly altered by PRT (A, C-D: p � 0.270). = CON 22; = CON 4;

= PRT 22; = PRT 4.
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hemostatic function of WB stored either at 4°C or room
temperature (RT; 22°C) over several days. To this end, we
assessed hemostatic function at multiple levels, including
changes in levels of coagulation factors in plasma, PLT
activation status, PLT response to chemical agonists, PLT
adhesion receptor levels, PLT function under static and
flow conditions, and overall clot properties. Our compre-
hensive analyses demonstrate that hemostatic function in
vitro is mostly unaffected by PRT treatment and is better
preserved at 4°C versus RT storage.

METHODS

Institutional review board approval was obtained for blood
collection from 32 healthy adult donors, and standard
blood donation guidelines were followed. Thirty-two units
(450 � 50 mL) of WB were placed in commercially avail-
able bags containing 63 mL of CPD anticoagulant (Teru-

flex, Terumo Medical Corporation, Somerset, NJ). PRT was
performed on half of the units collected (16 of 32; see
Fig. 1). Each unit was drained into the citrated polyvinyl
chloride illumination bag (attached to a storage bag; set
manufactured by Terumo BCT, Lakewood, CO), and ribo-
flavin solution was added (35 mL of 500-mM riboflavin in
0.9% NaCl; Terumo BCT), roughly a 5%-10% dilution com-
pared with control bags. The illumination/storage set was
weighed, the hematocrit (HCT) of the contents was deter-
mined, and the set was placed in the illuminator and
exposed to UV light (265-400 nm of phosphor; Mirasol
System, Terumo BCT) for a dose of 80 J/mLRBC. The major-
ity (99%) of the total energy reaching the product through
the plastic is in the UV-B (280-315 nm) and UV-A (315-
400 nm) spectral regions. After treatment, the contents of
the illumination bag were drained into the attached
storage bag, and the illumination bag was removed. All WB
units were stored for 21 days under two temperature

TABLE 1. Complete blood count

Study day CON 4 CON 22 PRT 4 PRT 22 CON 4 CON 22 PRT 4 PRT 22

WBC (¥103/mL) Granulocytes (¥103/mL)
0 5.0 � 0.5 5.4 � 0.5 4.9 � 0.3 6.6 � 0.9 2.9 � 0.3 3.2 � 0.4 3.0 � 0.2 4.3 � 0.8
1 5.8 � 0.4 5.6 � 0.5 4.8 � 0.2 6.2 � 0.9 3.2 � 0.3 3.1 � 0.4 2.8 � 0.2 2.5 � 0.4
2 5.5 � 0.4 5.4 � 0.5 4.8 � 0.3 6.1 � 0.8 2.8 � 0.3 2.6 � 0.4 2.8 � 0.2 0.9 � 0.2
3 5.8 � 0.5 5.4 � 0.4 4.9 � 0.3 6.1 � 0.9 2.9 � 0.5 2.1 � 0.3 2.4 � 0.3 0.4 � 0.1
4 5.3 � 0.5 5.3 � 0.4 4.6 � 0.2 5.7 � 1.1 2.1 � 0.4 1.6 � 0.2 1.9 � 0.3 0.3 � 0.0
5 5.5 � 0.5 5.3 � 0.4 5.2 � 0.4 5.9 � 0.8 1.6 � 0.3 1.4 � 0.2 2.0 � 0.5 0.6 � 0.4
6 5.5 � 0.5 5.5 � 0.5 5.0 � 0.3 5.9 � 0.8 1.1 � 0.2 1.1 � 0.2 1.4 � 0.4 0.2 � 0.1
7 4.9 � 0.6 5.3 � 0.6 4.2 � 0.6 5.2 � 0.4 0.9 � 0.2 0.8 � 0.2 1.2 � 0.3 0.2 � 0.0

10 5.2 � 0.4 5.5 � 0.6 5.0 � 0.3 5.8 � 0.8 0.5 � 0.1 0.9 � 0.5 0.7 � 0.2 0.4 � 0.1
14 4.9 � 0.4 5.2 � 0.5 4.5 � 0.3 5.7 � 0.8 0.4 � 0.1 0.4 � 0.1 0.3 � 0.1 0.9 � 0.2
21 4.9 � 0.4 5.3 � 0.5 4.4 � 0.3 5.7 � 0.8 0.3 � 0.0 0.7 � 0.2 0.3 � 0.0 1.5 � 0.2

RBC (¥103/mL) Hb (g/dL)
0 4.1 � 0.2 4.1 � 0.2 4.1 � 0.1 4.2 � 0.1 13 � 0 13 � 1 13 � 0 13 � 1
1 4.2 � 0.2 4.0 � 0.2 3.7 � 0.2 4.0 � 0.4 13 � 1 12 � 1 12 � 0 13 � 1
2 3.9 � 0.2 4.1 � 0.1 3.8 � 0.1 3.9 � 0.1 12 � 1 13 � 1 12 � 0 12 � 0
3 4.1 � 0.1 3.9 � 0.2 3.8 � 0.2 4.0 � 0.1 13 � 0 12 � 1 12 � 1 12 � 1
4 3.9 � 0.2 4.1 � 0.2 3.6 � 0.1 4.1 � 0.3 12 � 1 13 � 1 12 � 0 13 � 1
5 4.0 � 0.2 4.0 � 0.2 3.6 � 0.2 3.9 � 0.4 13 � 1 12 � 1 12 � 1 12 � 1
6 4.1 � 0.2 4.1 � 0.2 3.9 � 0.1 3.9 � 0.1 13 � 0 13 � 1 12 � 0 12 � 1
7 4.1 � 0.2 4.1 � 0.2 3.6 � 0.2 3.9 � 0.2 13 � 0 13 � 1 12 � 1 12 � 1

10 3.9 � 0.2 4.1 � 0.2 4.0 � 0.2 3.8 � 0.2 12 � 1 13 � 1 13 � 1 12 � 1
14 3.8 � 0.3 4.0 � 0.2 3.7 � 0.1 3.8 � 0.2 12 � 1 12 � 1 12 � 0 12 � 1
21 4.0 � 0.1 4.2 � 0.2 3.8 � 0.1 3.9 � 0.1 13 � 0 13 � 1 12 � 0 12 � 0

HCT (%) PLT (¥103/mL)
0 37 � 1 37 � 2 37 � 1 38 � 1 156 � 16 171 � 17 150 � 16 183 � 25
1 38 � 2 36 � 2 33 � 1 36 � 3 142 � 21 191 � 11 140 � 9 164 � 18
2 35 � 2 37 � 1 34 � 1 35 � 1 160 � 17 189 � 15 132 � 10 174 � 13
3 37 � 1 36 � 2 34 � 2 36 � 1 165 � 15 195 � 16 122 � 13 170 � 13
4 35 � 1 38 � 2 33 � 1 37 � 3 146 � 18 189 � 13 108 � 14 163 � 16
5 37 � 2 37 � 2 33 � 2 36 � 3 151 � 16 192 � 15 118 � 9 166 � 16
6 37 � 1 38 � 2 36 � 1 36 � 1 146 � 14 187 � 14 108 � 11 165 � 10
7 37 � 1 38 � 2 33 � 2 36 � 2 145 � 13 190 � 21 107 � 10 164 � 16

10 35 � 2 38 � 2 37 � 2 36 � 2 138 � 11 177 � 16 98 � 9 162 � 16
14 35 � 2 36 � 2 34 � 1 36 � 2 128 � 10 178 � 17 88 � 7 171 � 16
21 37 � 1 38 � 2 35 � 0 39 � 1 110 � 7 166 � 19 94 � 10 173 � 17

PLT count decreased with both refrigeration and PRT (p � 0.007). Temperature storage differences in WBCs among treatment groups were
significant but not clinically relevant (p = 0.037; Table 1); PRT effects did not differ between groups (p = 0.275). Granulocytes decreased over
time, a process accelerated by RT storage and PRT (p � 0.047; Table 1). HCT, Hb, and RBCs did not change relative to baseline or differ
between groups (p � 0.817).
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conditions, resulting in four treatment groups (Fig. 1):
CON 4, untreated WB stored at 4°C (n = 8); CON 22,
untreated WB stored at 22°C (n = 8); PRT 4, pathogen-
reduced WB stored at 4°C (n = 8); and PRT 22, pathogen-
reduced WB stored at 22°C (n = 8). WB was tested at
baseline and on Days 1-7, 10, 14, and 21. Between sam-
pling,WB units were protected from light and UV radiation
within a metal-lined storage container.

At each testing point, a Luer lock access port was
attached with the use of a sterile technique and a 14-mL
aliquot of WB collected. Tests performed included: com-
plete blood count (Coulter Ac-T diff2 Analyzer, Beckman
Coulter, Inc., Brea, CA); prothrombin time (PT) and acti-
vated partial thromboplastin time (aPTT; STart-4 Ana-

lyzer, Diagnostica Stago, Inc., Parsippany, NJ); and
plasma-free hemoglobin (Hb; Plasma/Low Hb Photom-
eter, HemoCue, Ängelholm, Sweden) for determination of
sample hemolysis, as a measure of WB integrity. Throm-
boelastography (TEG; Haemonetics Corporation, Brain-
tree, MA) with kaolin activation measured WB hemostatic
characteristics. Parameters recorded were clotting time
(R), clot formation (K), alpha angle (a-angle), maximum
amplitude (MA), clot lysis at 30 and 60 minutes (LY30 and
LY60, respectively), and total thrombin generation (TTG).
TTG was estimated by taking the first derivative of the TEG
tracing as previously described.14

PLT function was assessed with multiple electrode
impedance aggregometry (Multiplate 5.0 Analyzer,
Dynabyte Medical, Munich, Germany), and samples were
stimulated with adenosine diphosphate (ADP), collagen
(COL), thrombin receptor-activating peptide-6 (TRAP),
arachidonic acid agonist (ASPI), and two concentrations
of ristocetin (ristocetin low [RL]: 0.2 mg/mL; and ristoce-
tin high [RH]: 0.77 mg/mL, respectively). Multiple elec-
trode aggregometry data were reported in arbitrary units
defined as area under the curve. Shear effects and von
Willebrand factor (vWF)-mediated PLT adhesion and
aggregation were measured with a cone-and-plate ana-
lyzer (DiaMed Impact-R, Bio-Rad Laboratories, Hercules,
CA). Adhesion was measured as percent surface coverage
(%SC), and aggregation as aggregate size (AS; in square
micrometer). A commercial analyzer (STA-R Evolution
Hemostasis System, Diagnostica Stago, Inc.) measured
d-dimer, antithrombin III (ATIII), fibrinogen (FIB), factor V
(FV), factor VIII (FVIII), protein C, and vWF. Results for
PRT-treated samples were corrected for the dilution due to
the addition of riboflavin. Soluble CD40 ligand (sCD40L)
released by PLTs into stored blood was measured with an
enzyme-linked immunosorbent assay kit (human sCD40L
Platinum [extra sensitive], eBioscience, Inc., San Diego,
CA).

Microparticles (MPs) in platelet-poor plasma (PPP),
prepared by centrifugation (3000 ¥ g) for 10 minutes, were
quantified and characterized as to their cellular origin,
antigen expression, and size distribution by flow cytom-
etry (BD FACS Canto II, BD Biosciences, San Jose, CA) with
a forward scatter (FSC) photomultiplier tube (PMT) reso-
lution of 200-nm events. Bead mixtures (201, 390, 505, 794,
and 990 nm; Bangs Laboratories, Fishers, IN) were used to
generate a standard curve against the median FSC PMT
data from which MP sizes were determined. An MP gate
was set between 990 and 201 nm. Hank’s balanced salt
solution (HBSS) was filtered through a sterile 0.1-mm
membrane, and sheath fluid was filtered through two
inline 0.1-mm membranes.

For identification of cellular origin and antigen
expression, an antibody panel was prepared with fluores-
cein isothiocyanate conjugated lactadherin (phosphati-
dylserine [PS] expression; Haematologic Technologies,
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Inc., Essex Junction, VT); PE-Cy7 conjugated anti-human
CD45 (WBCs; eBioscience); PE conjugated anti-human
CD142 (tissue factor [TF]; BD Biosciences), PE-Cy-5 con-
jugated anti-human CD62P (P-Selectin [P-Sel], PLTs, BD
Biosciences), APC conjugated anti-human CD235a (glyco-
phorin A, RBC; BD Biosciences), and APC-H7 conjugated
anti-human CD41a (glycoprotein IIb [GPIIb], PLTs; BD
Biosciences) with the use of the recommended volumes
from the manufacturers.

Appropriate isotype control for each antibody was
combined in a separate tube. Five microliters of PPP was
added to the antibody and isotype panels, incubated for 30
minutes on ice, and 900 mL of filtered HBSS was added to
each tube.The sample was analyzed by flow cytometry, and
electronic noise was excluded from the MP gate by setting

the appropriate instrument threshold.
FSC PMT and side scatter data were
acquired with the use of logarithmic set-
tings. The concentration of MPs was
measured with the use of BD TruCount
absolute counting tubes (BD Bio-
sciences) with a known number of
beads. For absolute MP counts, 5 mL of
PPP and 995 mL of HBSS were added to
each TruCount tube, and data collected
until 1000 beads were counted. Data
analysis was performed with the use
of BD FACS Diva software (BD
Biosciences).

A second set of experiments was
undertaken to further characterize the
effects of PLT storage on shear-induced
platelet aggregation (SIPA) following a
protocol described by Montgomery and
colleagues15 Platelet-rich plasma (PRP)
was obtained via a standard protocol
and stored without agitation at 4°C or
22°C. Samples were tested at baseline
and on Days 2 and 7. Briefly, 80 mL of
washed PLTs was resuspended to a final
concentration of 1–5 ¥ 107/mL in 4-
(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid (HEPES)/Tyrode’s buffer
with Ca2+, Mg2+, 2 mg/mL FIB (EMD
Chemicals, Billerica, MA), and 5 mg/mL
vWF (Haematologic Technologies), and
exposed to shear forces of 2500 or
10,000 s-1 for 120 s at 37°C in a
computer-controlled 0.5° cone-and-
plate rheometer (Anton-Paar, Graz,
Austria). Ten-microliter samples were
immediately fixed in 1% formaldehyde,
and PLT aggregation was measured by
flow cytometry.15 Glycoprotein Ib alpha
(GPIba) receptor expression levels were

estimated by the binding of the fluorescently conjugated
anti-GPIba monoclonal antibody AK2 (Abcam, Boston,
MA) to stored PLTs. Ristocetin-induced platelet agglutina-
tion (RIPA) was performed based on our standard protocol
with the use of washed PLTs with 0.75-mg/mL ristocetin
and 5-mg/mL vWF.15

Statistical analysis was performed with SAS 9.2 soft-
ware (SAS Institute, Cary, NC). Data were reported as
mean values � standard error of the mean, unless noted
otherwise. Differences between treatment groups were
evaluated with repeated measures analysis of variance
(RM-ANOVA) with analysis of individual effects (time, PRT
treatment, and temperature storage) to determine signifi-
cance, which was set at p < 0.05. Reported p values reflect
RM-ANOVA with analysis of individual effects, unless
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strated that agonist-stimulated aggregation decreased over time in all four treat-

ment groups (A-F: p � 0.001); however, losses were attenuated in samples stored at

4°C compared with those stored at 22°C (A-F: p � 0.001). PRT-treated samples dem-

onstrated lower COL-, TRAP-, and RL-stimulated aggregation compared with con-

trols (B, C, F: p � 0.033), but differences were not significant in ADP-, ASPI-, and

RH-stimulated samples (A, D, E: p � 0.242). Aggregation immediately after PRT, with

the exception of ADP and TRAP, were within one standard deviation of healthy

subject ranges at our center. = CON 22; = CON 4; = PRT 22; = PRT 4.
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explicitly stated otherwise. When a single p value was
given without reference to individual effects, the p value
applies to all three, and the mathematical symbol “�” or
“�” was used. Post hoc analysis for within-time-point
comparisons was made via the Holm–Sidak method.
Interactions were evaluated by one-way or two-way
ANOVA, as appropriate.

RESULTS

Multiple measures assessed sample quality over time.
Lactate, a by-product of anaerobic respiration, increased
significantly with storage, but refrigeration slowed accu-

mulation (p � 0.001; Fig. 2A). Glucose,
analyzed as a measure of metabolic
activity, decreased significantly;
however, losses were attenuated by
refrigeration (p � 0.001; Fig. 2B).
Hemolysis, a reflection of RBC integrity,
was higher in samples stored at RT, par-
ticularly after Day 7 (p = 0.014; Fig. 2C),
and remained essentially unchanged in
refrigerated samples (Fig. 2C). Storage
at 4°C slowed the decrease in pH over
time (p � 0.001; Fig. 2D). Differences
due to PRT were only significant for
glucose measurements (glucose:
p � 0.008, Fig. 2B; lactate, hemolysis,
and pH: p � 0.270, Fig. 2A, C-D).

PLT count decreased with both
refrigeration and PRT (p � 0.007,
Table 1). Temperature storage differ-
ences in WBCs among treatment groups
were significant but not clinically rel-
evant (p = 0.037, Table 1). Granulocytes
decreased over time, a process acceler-
ated by RT storage and PRT (p � 0.047,
Table 1). HCT, Hb, and RBCs did not
change relative to baseline or differ
between groups (p � 0.817, Table 1).
Soluble CD40L, a potent inducer of
inflammatory responses and an indica-
tion of decreased PLT viability when
elevated,16 was not significantly altered
by storage temperature, PRT, or storage
duration (p � 0.231), and mean values
remained within normal subject levels
in all groups (minimum: 2.3 � 1.0 ng/
mL; maximum: 5.7 � 1.0 ng/mL; eBio-
science product insert normal subject
range: nondetectable, 7.5 ng/mL).

Coagulation results differed
between the type of test performed and
between subject groups. PT and partial
thromboplastin time (PTT) increased

over time, but refrigeration attenuated the effect on PT
(p � 0.009; Fig. 3A). Mean PT levels were within the refer-
ence ranges determined by our clinical laboratory (PT:
12.1-14.7 sec) through Day 7 in the CON 4 group com-
pared with Day 4 for CON 22. PRT prolonged both PT and
PTT (p � 0.009; Fig. 3A-B), and mean values were above
reference ranges by Posttreatment Day 1.

A repeated measures analysis demonstrated that
agonist-stimulated impedance aggregation decreased
over time in all four treatment groups (p � 0.001; Fig. 4A-
F); however, losses were attenuated in samples stored at
4°C compared with those stored at 22°C (p � 0.001;
Fig. 4A-F). PRT-treated samples demonstrated lower
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COL-, TRAP-, and RL-stimulated aggregation compared
with controls (p � 0.033; Fig. 4B, C, F), but differences
were not significant in ADP-, ASPI-, and RH-stimulated
samples (p � 0.242; Fig. 4A, D-F).

Storage at 4°C preserved TEG R, K, MA, clot strength,
and TTG relative to samples stored at RT (p � 0.001;
Fig. 5A-F). Differences in TEG clot strength and TTG were
not significant after PRT compared with controls by
RM-ANOVA (p � 0.237; Fig. 5E, F). R, K, a-angle, and MA
were altered by PRT treatment, but results for samples in
cold storage, including those that underwent PRT,
remained within normal subject limits throughout most
of the study.17 Fibrinolysis as measured by TEG was inhib-
ited by both cold storage and PRT compared with control
samples stored at RT (LY30: p = 0.012; LY60: p � 0.001;
Fig. 6A, B). There was no difference between groups in
d-dimer accumulation over storage time, and most values
were approximately within � 30% of baseline (p = 0.412;
Fig. 6C).

The effects of PRT and temperature storage conditions
on coagulation factors were variable. ABO blood type distri-
bution was not equal between groups (CON 4: 100% type O;

CON 22: 25% type O, 37.5% type A, 25%
type B, 12.5% type AB; PRT 4: 62.5% type
O, 37.5% type A; and PRT 22: 50% type O,
50% type A). Mean baseline values for
most plasma measurements differed
between groups (p � 0.05), possibly due
to the differences in distribution of ABO
blood groups because of donor schedul-
ing constraints; therefore, results are
shown as percent change from baseline.
Refrigeration prevented decline in FIB
and ATIII levels. PRT caused an initial
drop in FIB (26%-30%; PRT: p � 0.001;
Fig. 7A); however, mean values remained
within normal subject ranges (145-
348 mg/dL) for all groups (lowest:
173 � 6 mg/dL, Day 1, PRT 4).18 Tempera-
ture did not have a significant effect
(TEMP: p = 0.364; Fig. 7A). PRT had no
immediate effect on ATIII, and losses over
time were attributable to storage at RT
(p � 0.001; Fig. 7B). Differences between
treated and untreated groups stored at
the same temperature were not signifi-
cant in pairwise comparisons of any
given day (p � 0.471; Fig. 7B). Protein C
levels decreased over time and due to
storage at RT (p � 0.001; Fig. 7C) but not
due to PRT treatment (p = 0.529). Refrig-
eration diminished losses. FV and FVIII
decreased due to PRT and over time
(p � 0.001; Fig. 7D, E). Storage tempera-
ture had no effect on FV (p = 0.243), but

cold storage affected FVIII adversely (p = 0.036). Levels of
vWF remained within �10% of baseline (Fig. 7F).

Cone-and-plate aggregometry measures GPIb–vWF
PLT adhesion reported as %SC, followed by GPIIb/IIIa–
FIB-mediated aggregation expressed as AS. Refrigeration
significantly attenuated the decline in %SC over time
(p � 0.001; Fig 8A), whereas PRT effects were not signifi-
cant (p = 0.058). Diminished AS, reflecting loss of GPIIb/
IIIa and FIB-mediated PLT aggregation, was attenuated by
refrigeration (p � 0.019; Fig 8B); PRT-related differences
were not significant (p � 0.125). Mean values were within
healthy subject limits throughout the period studied.
These findings were consistent with results from
ristocetin-induced impedance aggregometry as described
above. We observed a similar pattern in platelet concen-
trates (PCs) derived from PRP and stored at 4°C versus
22°C for 7 days (Fig. 9). SIPA and RIPA levels were both
higher after cold storage compared with RT (SIPA Day 2:
p = 0.032; RIPA Day 7: p = 0.002; Fig. 9A, B). Cold storage
increased both the percentage of GPIb-expressing PLTs
and the expression level, as measured by AK2, by Day 7
compared with RT storage (p � 0.009; Fig. 9C, D).
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MP subpopulations increased over time in most treat-
ment groups (p � 0.05, n = 6-8 per treatment group;
Fig. 10). The combination of PRT and 4°C was associated
with the lowest MP levels; otherwise, temperature and PRT
effects varied among MP subpopulations (Fig. 10). Size dis-
tributions fell into two ranges: 201-330 and 330-1000 nm.
Abundance ratios were approximately 90% (201-330 nm)
and 10% (330-1000 nm), respectively, throughout the

study. The PS-expressing subpopulation
was the most abundant MPs found (up to
31% of events; Fig. 10A). As a group, PS
MPs were not significantly altered by
either storage temperature or pathogen
reduction, but up to 68% of this popula-
tion was positive for other markers, the
overwhelming majority of which were
PLTs in origin (50% of PS MP). RBC-,
WBC-, and PLT-derived MP distributions
responded to refrigeration and PRT
treatment in divergent ways (Fig. 10B-
E). Cold storage significantly reduced
RBC-derived MP accumulation
(p � 0.001; Fig. 10B). A similar effect was
seen inWBC, PLT, and TF-expressing PLT
MP but only when combined with PRT
(p � 0.031; Fig. 10C-E). Interestingly,
increases in PLT MP were also mini-
mized by RT storage in the absence of
PRT. PLT MPs were further examined for
P-Sel membrane expression; tempera-
ture and PRT effects were not significant
in this population (p = 0.154; Fig. 10F).

DISCUSSION

The experience of military and civilian
surgeons since World War I has demon-
strated that treatment of severe hemor-
rhage requires blood replacement.
Among civilian and military trauma sur-
geons, component therapy to treat
massive hemorrhage has recently
moved toward reapproximating WB
with RBCs, FFP, and PLTs after reports
of improved survival.6,9,10,19-24 This
approach is complicated by the logistical
challenges of 1) managing RBC inven-
tory age; 2) balancing thawed plasma
and FFP inventories to provide plasma in
a timely manner; and 3) ensuring suffi-
cient PLT products, which are limited by
a 5-day shelf life and the risks associated
with RT storage. Bacterial contamina-
tion of PLTs remains a common
problem, despite scientific investiga-

tions spanning decades and involving considerable finan-
cial investments; more problematic still is the human cost
in severe septic events and fatalities.25,26 To minimize sepsis
risk, PLTs are quarantined for 24 hours while awaiting
culture results, which effectively limits the shelf life to 4
days. PLTs are stored at RT to maximize PLT circulation
time, as refrigeration leads to PLT clearance within 48
hours of transfusion.27 Unfortunately, this practice comes
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at the cost of a high risk of contamination and may have
clinical consequences of increased morbidity.28

Currently, WB is used by the military as a rescue
product for severe hemorrhage when component therapy
is unavailable or ineffective.6,7,10-13 Storage is limited to 24
hours at RT. This is due to concern for PLT viability and
because, as an emergency product, it does not undergo
comprehensive in-theater infectious disease testing. Both
military and civilian clinicians have reported promising
results in patients who were treated with WB, possibly

related to the avoidance of unbalanced resuscitation strat-
egies characterized by early RBC and late hemostatic
plasma and PLT transfusions.9,10,12,19,29 The use of WB for
wider applications has an inherent teleological rationale,
as it replaces what is lost during hemorrhage, but the
important considerations that must be addressed before
such a strategy is broadly applied include pathogen miti-
gation, storage temperature and time, and maintenance of
hemostatic capacity.

PLTs are integral to the hemostatic potential of WB,
and recent reviews of the military experience demonstrate
that they have a closer association with beneficial out-
comes than other blood components.6 Expansion of WB
use would necessitate storage for more than 24 hours, and
cold storage would be beneficial in inhibiting bacterial
growth. However, refrigeration causes accelerated PLT
elimination due to two mechanisms: clustering and desia-
lylation of the GPIba receptor with subsequent clearance
via Mac-1 integrin binding by hepatic and splenic mac-
rophages, and GPIba receptor binding to Ashwell–Morell
receptors on hepatocytes.30,31 PLT activation and acceler-
ated clearance is also seen in vivo after exposure to cold
temperatures;30 these mechanisms have been the ratio-
nale for eliminating the use of cold PLTs after the phenom-
enon was first observed more than five decades ago.30,32

Severe traumatic hemorrhage is a highly acute problem
limited by total blood volume and flow rate; however, the
question of whether a highly active but transient PLT
population might be useful for massive bleeding was once
debated but not pursued for reasons that remain
unclear.33

The practical use of WB would require storage beyond
24 hours and thus presents a conundrum: while refrigera-
tion promotes the accelerated clearance of PLTs, storage at
RT poses the risk of bacterial contamination as well as
decreased blood cell viability due to metabolic stress.25,26,34

Methods to nonspecifically reduce pathogens are cur-
rently under investigation and may hold the key to a safe,
cost-effective, and hemostatic WB product,13,35-44 either
with or without refrigeration. Here, we have comprehen-
sively evaluated the in vitro effects of PRT treatment,
refrigeration, and RT storage on coagulation and hemo-
stasis over a 21-day period.

The data from these experiments indicate that loss of
PLT function over time can be attenuated by refrigeration.
A limitation of this study is that we did not try to balance
ABO blood type between groups. As a result, all the blood
in the CON 4 group was type O, which is associated with
lower levels of vWF and FVIII.45,46 Because this group dis-
played the best aggregation and coagulation function over
time, it is unlikely that differences in the experimental
data associated with cold storage were attributable to
unequal ABO distribution.

Pathogen reduction causes an initial drop in several
measures of coagulation; however, PRT WB does not
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subsequently differ from control in many assays. Flow
cytometry demonstrated that pathogen reduction in com-
bination with cold storage prevents or reduces MP forma-
tion from several cell types and confirmed that antibody
detection of GPIba was preserved with refrigeration.
Release of the PLT-derived inflammatory mediator
sCD40L was minimal and not significantly increased
from baseline in all conditions tested. PLT viability after
pathogen reduction has been shown to correlate with a
low glucose consumption rate,36,47 and we found that both
PRT and refrigeration delayed reductions in glucose
plasma levels, evidence of slowed metabolism in the cel-
lular constituents of WB. Hemolysis, a measure of RBC
lysis, was minimal in all groups through Day 7 and mini-
mized after that by storage at 4°C with or without PRT
treatment.

PT and aPTT are widely used measures of coagulation
function that have been criticized as poor predictors of
bleeding. These two parameters were greatly affected by
time and PRT treatment, but PT prolongation was largely
prevented for a week by refrigeration. As expected, the
prolongations in PT and PTT were associated with
decreases in the activities of a number of coagulation
factors, in particular FV and FVIII. Similarly, agonist-
stimulated PLT aggregation, as measured by impedance

aggregometry, was decreased by time
and RT storage, but unlike PT and PTT,
PRT-related decreases were less marked
and not significant in the case of ADP,
ASPI, and RH. A better measure of PLT
aggregation under flow, namely, shear-
mediated PLT aggregation, was rela-
tively preserved at 4°C, as measured by
cone-and-plate aggregometry in both
WB and PC, suggesting that PLT hemo-
static function is more dependent on
temperature than the storage solution.
Taken together, these data suggest that
refrigerated PRT WB could support
primary hemostasis and retain utility
during extended storage.

In contrast to the results of the
reductionist methods of blood compo-
nent analysis described above, most
TEG parameters for cold-stored WB
remained largely within normal limits
over the 21-day WB storage period.17

These data indicate that PLT and coagu-
lation function in cold-stored WB may
be sufficient to provide hemostatic
resuscitation, although this needs to be
validated with in vivo studies. The TEG
finding of diminished clot lysis associ-
ated with pathogen reduction and
refrigeration is intriguing and suggests

that PRT WB may complement the beneficial effects of the
antifibrinolytic, tranexamic acid in trauma resuscitation,
particularly in the most coagulopathic patients who dem-
onstrate hyperfibrinolysis.

The clinical significance of these findings has yet to
be established. These data indicate that PRT-treated,
refrigerated WB can maintain hemostatic function when
stored for several weeks, making it a potentially useful
adjunct in austere environments when components from
US blood banks cannot be obtained. If PRT WB provides
adequate PLT function and coagulation factor activity to
support hemostasis in the setting of severe bleeding, phy-
sicians could prepare it in anticipation of mass casualties
with refrigerated, treated blood donated by soldiers in a
forward blood bank. Our TEG results suggest that refrig-
erated PRT WB may be sufficient to restore hemostasis,
even at 21 days of storage; however, this remains to be
studied in in vivo models. Further refinements to PRT WB
such as inhibition of glycosyltransferases could prevent
or delay PLT clearance.32,48-51 In summary, these data
demonstrate that refrigerated PRT WB retains substantial
in vitro hemostatic activity over 21 days of storage, sug-
gesting the viability of an expanded role for WB in hem-
orrhage resuscitation. Clinical studies of its safety and
efficacy are warranted.
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